Projection and contraction methods for constrained convex minimization problem and the zero points of maximal monotone operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized gradient-projection methods for finding the minimum-norm solution of the constrained convex minimization problem

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Assume that g is a real-valued convex function and the gradient ∇g is [Formula: see text]-ism with [Formula: see text]. Let [Formula: see text], [Formula: see text]. We prove that the sequence [Formula: see text] generated by the iterative algorithm [Formula: see text], [Formula: see text] converges strongly to [Formul...

متن کامل

Common Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms

In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...

متن کامل

Fixed Points in the Family of Convex Representations of a Maximal Monotone Operator

Any maximal monotone operator can be characterized by a convex function. The family of such convex functions is invariant under a transformation connected with the Fenchel-Legendre conjugation. We prove that there exist a convex representation of the operator which is a fixed point of this conjugation. 2000 Mathematics Subject Classification: 47H05 keywords: maximal monotone operators, conjugat...

متن کامل

A Forward-Backward Projection Algorithm for Approximating of the Zero of the ‎S‎um of ‎T‎wo Operators

‎I‎n this paper‎, ‎a‎ forward-‎b‎ackward projection algorithm is considered for finding zero points of the sum of two operators‎ ‎in Hilbert spaces‎. ‎The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly‎ ‎monotone operator and a maximal monotone operator‎. ‎We apply the result for solving the variational inequality problem, fixed po...

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Nonlinear Sciences and Applications

سال: 2017

ISSN: 2008-1898,2008-1901

DOI: 10.22436/jnsa.010.02.26